
Appendix 3.1

Contents.

• Differentiation of sin x.

• The Sum Rule for derivatives.

•
dx−n

dx
for n ∈ N and x 6= 0.

• More Examples

• How not to prove the Product or Quotient Rules.

• How not to prove the Composite Rule for differentiation.

• Another proof of the Composite Rule for differentiation.

•
dx1/q

dx
for x > 0 and q ∈ N.

1. Differentiation of sin x. Looking back at Example 3.1.5 we find

lim
x→a

sin x− sin a

x− a
= cos a lim

h→0

sinh

h
+ sin a lim

h→0

cosh− 1

h
. (6)

So we need to evaluate

lim
h→0

sinh

h
and lim

h→0

cosh− 1

h
.

This was done in a previous section by considering the areas of triangles
and sectors of circles. You might have been tempted, instead, to use
L’Hôpital’s Rule. For example

lim
h→0

sinh

h
= lim

h→0

cosh

1
= 1.

Yet to do this you need to know that the derivative of sin x is cos x.
This would lead to

d

dx
sin x = cosx

L’Hôpital
=⇒ lim

h→0

sinh

h
= 1

by (6)
=⇒

d

dx
sin x = cosx.

A classic example of a circular argument.

14



2. Example 3.1.16 Prove the Sum Rule for derivatives.

Solution: Consider

lim
x→a

(f + g) (x)− (f + g) (a)

x− a
= lim

x→a

f(x) + g(x)− f(a)− g(a)

x− a

= lim
x→a

f(x)− f(a)

x− a
+ lim

x→a

g(x)− g(a)

x− a

by the Sum Rule for Limits,

= f ′ (a) + g′ (a) .

Since these last two limits exist we justify the use of the Sum Rule for
limits as well as proving that f + g is differentiable at a. Further

(f + g)′ (a) = f ′(a) + g′(a) .

�

3. Let n ∈ N and a 6= 0 be given. For x 6= 0 consider

1

xn
−

1

an

x− a
= −

1

xnan
xn − an

x− a
.

So by the rules for limits

lim
x→a

1
xn −

1
an

x− a
= −

1

(limx→a xn) an
lim
x→a

xn − an

x− a

= −
1

a2n
nan−1 by the work done on

dxn

dx
,

= −na−n−1.

So
dx−n

dx

∣

∣

∣

∣

x=a

= −na−n−1.

Yet a 6= 0 was arbitrary, hence

dx−n

dx
= −nx−(n+1)

for all x 6= 0. �
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4. More Examples In an earlier Appendix the following functions were
seen to be continuous on R. Are they differentiable on R?

f1(x) =











ex − 1

x
if x 6= 0

1 if x = 0.

f2(x) =











sin θ

θ
if θ 6= 0

1 if θ = 0.

f3(x) =











cos θ − 1

θ
if θ 6= 0

0 if θ = 0.

f4(x) =















cos θ − 1

θ2
if θ 6= 0

−
1

2
if θ = 0.

f5(x) =















ex − 1− x

x2
if x 6= 0

1

2
if x = 0.

By the Quotient Rule they are all differentiable for non-zero x or θ. At
0 we have to return to the definition. For example, for f1 consider, for
x 6= 0,

f1(x)− f1(0)

x− 0
=

ex−1
x
− 1

x
=

ex − 1− x

x2
= f5(x) .

Thus

lim
x→0

f1(x)− f1(0)

x− 0
= lim

x→0
f5(x) =

1

2
.

Hence f1 is differentiable at 0 with f ′1 (0) = 1/2.

For f2 we would get

f2(θ)− f2(0)

θ − 0
= lim

θ→0

sin θ − θ

θ2
.

But then, what is

lim
θ→0

sin θ − θ

θ2
?

There is no elementary way to evaluate this, so we will have to wait for
later results.

I leave the other functions to students to consider. �
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5. Warning In the proof of the Product Rule

(fg)′ (a) = f ′(a) g(a) + f(a) g′(a)

we started by looking at the LHS, (fg)′ (a). Do not start by looking
at the RHS, for you are likely to write

f ′(a) g(a) + f(a) g′(a) = lim
x→a

f(x)− f(a)

x− a
g(a) + f(a) lim

x→a

g(x)− g(a)

x− a

= lim
x→a

(

(f(x)− f(a)) g(a) + f(a) (g(x)− g(a))

x− a

)

.

Though this is not wrong it is not going to simplify to (fg)′ (a).

Similarly, to prove
(

1

g

)

′

(a) = −
g′(a)

g2(a)
,

we started by examining the LHS. Do not start by looking at the RHS,
for you are likely to write

−
g′(a)

g2(a)
= −

1

g2(a)
lim
x→a

g(x)− g(a)

x− a
= lim

x→a

1
g(a)

− g(x)
g2(a)

x− a
.

Again this is not wrong but it is not going to simplify to (1/g)′(a).

6. A Warning Note on (3). You might be tempted to replace (3) by

f(g(x))− f(g(k))

x− k
=

f(g(x))− f(g(k))

g(x)− g(k)

(

g(x)− g(k)

x− k

)

(7)

and try to say:

“let x → k for then g(x) → g(k) (since g is differentiable at k im-
plies g is continuous at k). Then the right hand side of (7) tends to
f ′(g (a)) g′(a), giving the Composite Rule.”

But this would be WRONG, because (7) only holds when x 6= a and

g(x) 6= g(k) and it might be the case that g(x) = g(k) for infinitely
many x as x→ k. This is why the

f(g(x))− f(g(k))

g(x)− g(k)

in (7) is replaced by Fℓ(g(x)) in (3) .
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7. Alternative proof of the Composite Rule for differentiation.

In MATH20132, Calculus of severable variables, this result is gener-
alised to functions from R

n to R
m. The proof given in the notes does

not generalise so I will give one here that does.

The usual definition that g′ (k) exists can be written in the form

lim
t→0

g (k + t)− g(k)− tg′ (k)

t
= 0.

Write r1 (t) = g (k + t)−g(k)− tg′ (k) so limt→0 r1 (t) /t = 0. Similarly,
write the definition that f ′ (ℓ) exists in the form

lim
u→0

f(ℓ+ u)− f(ℓ)− uf ′(ℓ)

u
= 0,

and let r2(u) = f(ℓ+ u)− f(ℓ)− uf ′(ℓ), so limu→0 r2(u)/u = 0.

Our aim is to show that

lim
w→0

(f ◦ g) (k + w)− (f ◦ g) (k)

w
= g′(k) f ′(ℓ)

or

lim
w→0

(f ◦ g) (k + w)− (f ◦ g) (k)− wg′(k) f ′(ℓ)

w
= 0.

Writing

R (w) = (f ◦ g) (k + w)− (f ◦ g) (k)− wg′(k) f ′(ℓ)

the aim becomes to prove that limw→0 R(w)/w = 0.

We start with a rearrangement

R(w) = f
(

g (k + w)
)

− f
(

g(k)
)

− wg′(k) f ′(ℓ)

= f
(

r1(w) + ℓ+ wg′(k)
)

− f(ℓ)− wg′v (k) f ′(ℓ)

by definition of r1 and ℓ = g(k)

= r2
(

r1(w) + wg′(k)
)

+
(

r1(w) + wg′(k)
)

f ′(ℓ)− wg′(k) f ′(ℓ)

by definition of r2,

= r2
(

r1(w) + wg′(k)
)

+ r1(w) f
′(ℓ) .
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Hence
R(w)

w
=

r2
(

r1(w) + wg′(k)
)

w
+

r1(w)

w
f ′(ℓ) .

Go back to ε− δ definition of limits to finish the proof.

Let ε > 0 be given.

The definition of limw→0 r1(w)/w = 0 implies there exists δ1 > 0 such
that if 0 < |w| < δ1 then

∣

∣

∣

∣

r1(w)

w

∣

∣

∣

∣

<
ε

2 (1 + |f ′(ℓ)|)
i.e.

∣

∣

∣

∣

r1(w)

w
f ′(ℓ)

∣

∣

∣

∣

<
ε

2

|f ′(ℓ)|

(1 + |f ′(ℓ)|)
<

ε

2
.

(8)

And the definition of limw→0 r2 (w) /w = 0 implies there exists δ2 > 0
such that if 0 < |w| < δ2 then

∣

∣

∣

∣

r2(w)

w

∣

∣

∣

∣

<
ε

2 (1 + |g′(k)|)
, i.e. |r2(w)| <

ε

2 (1 + |g′(k)|)
|w| . (9)

Why this most complicated factor of (1 + |g′ (k)|)? It is because (9)
now gives

∣

∣

∣

∣

∣

r2
(

r1(w) + wg′(k)
)

w

∣

∣

∣

∣

∣

<
ε

2 (1 + |g′(k)|)

|r1(w) + wg′(k)|

w
.

We could use (8) to bound the r1 factor in the right hand side, but
instead we go back to the definition, choosing ε = 1 to find δ3 > 0 such
that if 0 < |w| < δ3 then

∣

∣

∣

∣

r1(w)

w

∣

∣

∣

∣

< 1, i.e. |r1(w)| < |w| .

Then for 0 < |w| < min (δ2, δ3) we have

∣

∣

∣

∣

∣

r2
(

r1(w) + wg′(k)
)

w

∣

∣

∣

∣

∣

<
ε

2 (1 + |g′(k)|)

|w|+ |wg′(k)|

w
=

ε

2
, (10)

the complicated factor has vanished!
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Let δ = min (δ1, δ2, δ3) > 0 and assume 0 < |w| < δ. Then (8) and (10)
combine in

∣

∣

∣

∣

R(w)

w

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

r2
(

r1(w) + wg′(k)
)

w

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

r1(w)

w
f ′(ℓ)

∣

∣

∣

∣

<
ε

2
+

ε

2
= ε.

In this way we have verified the definition of limw→0 R (w)/w = 0.

�

8. Example 3.1.17 of Inverse Rule. For q ∈ N prove that

d

dy
y

1

q =
1

q
y

1

q
−1,

for all y > 0.

Solution Here g(y) = y1/q, which is the inverse function of f(x) = xq

on (0,∞) (which we know has an inverse since f is strictly increasing
and continuous on (0,∞)). We know that df (x) /dx = qxq−1, so

d

dy
y

1

q =
dg(y)

dy
=

1

df(x)

dx

∣

∣

∣

∣

x=g(y)

=
1

qxq−1|x=y1/q
=

1

q
y

1

q
−1.

. �

20


