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1. Differentiation of sinz. Looking back at Example 3.1.5 we find

. sinx —sina . sinh . . cosh—1
lim ——— =cosalim — +sinag lim ——.
T—a T — Q h—0 h, h—0 h

(6)

So we need to evaluate

. sin Ot cosh —1
o0 h R h

This was done in a previous section by considering the areas of triangles
and sectors of circles. You might have been tempted, instead, to use
L’Hopital’s Rule. For example

. sinh . cosh
lim = lim =1.
h—0 h h—0 1

Yet to do this you need to know that the derivative of sinz is cosu.
This would lead to

) L’Hépital ;. sSinh by (6) d .
—sinz = cosx lim =1 = —sinz = cosx.

dzx h—0 h dx

A classic example of a circular argument.
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2. Example 3.1.16 Prove the Sum Rule for derivatives.
Solution: Consider

i U9 @) = +9) @ (a) + 9(@) = f(a) - g(a)

= lim
T—a Tr—a r—a T — a
i S =@ g~ gl
z—a T —a z—a T —a

by the Sum Rule for Limits,

= [f(a)+4 (a).

Since these last two limits exist we justify the use of the Sum Rule for
limits as well as proving that f + ¢ is differentiable at a. Further

(f +9) (a) = f'(a) +¢'(a).

|
3. Let n € N and a # 0 be given. For z # 0 consider
1 1
o qn _ 1 2" —a”
T—a a" r—a
So by the rules for limits
. =L 1 .ot —=a"
lim % - = —— lim
z—a T — (lim,_q x") a” 20 x —a
= ——-na" ! by the work done on —,
a=" T
= —na "t
So
dxin —n—1
= —na
de |,_,
Yet a # 0 was arbitrary, hence
dx™"
— —(n+1)
= —nx
dx
for all  # 0. |
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4. More Examples In an earlier Appendix the following functions were
seen to be continuous on R. Are they differentiable on R?

C T x40 Sl g 20
filz) = T falz) = 0

| 1 if x =0. 1 if 6 =0.

. cos) —1 .

cosf — 1 i£0 240 g if 0 #£0
fs(@) = 0 fa(z) = .

\ 0 if 0 = 0. ) if 6 =0.

(e —1—2 .

— ifx#£0
fs(z) = < .

By the Quotient Rule they are all differentiable for non-zero x or 6. At
0 we have to return to the definition. For example, for f; consider, for

v #0, »
filr) = [0) 7 =1 el
l(l;z — 01( ) — - — € I.Q v = f5<ﬂj> .
Thus 0
iy PG = o ) = 5

Hence f; is differentiable at 0 with f{ (0) = 1/2.

For fy we would get

f2(8) — f2(0) _ Jig P 02— 0
6—0 0—0 0
But then, what is
sinf — 60
1m —27
0—0 0

There is no elementary way to evaluate this, so we will have to wait for
later results.

I leave the other functions to students to consider. [ ]
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5. Warning In the proof of the Product Rule
(f9)' (a) = f'(a) g(a) + f(a) ¢'(a)

we started by looking at the LHS, (fg)’' (a). Do not start by looking
at the RHS, for you are likely to write

F@oa) + @) ga) = tm IO g0y 4 f(q) g 2029
-y (L2 )te) (0 o) ot

Though this is not wrong it is not going to simplify to (fg) (a).

(5) -5

we started by examining the LHS. Do not start by looking at the RHS,
for you are likely to write

Similarly, to prove

1 9(x)
g% (a)
o

B _ i 9@ —9(@) _ . ola
92((1) 9> a) T—a T —a z—a T —

Again this is not wrong but it is not going to simplify to (1/g)"(a).

6. A Warning Note on (3). You might be tempted to replace (3) by

flg(x)) = flg(k) _ flg(x)) = f(g(F)) (9(96) - g(k’)) (7

=k g —gk) vk

and try to say:

)

“let © — k for then g(xz) — g(k) (since g is differentiable at k im-
plies g is continuous at k). Then the right hand side of (7) tends to
f'(g(a))¢'(a), giving the Composite Rule.”

But this would be WRONG, because (7) only holds when = # a and
g(z) # g(k) and it might be the case that g(x) = g(k) for infinitely
many z as  — k. This is why the

flg(z)) = fg(k))
g(w) — g(k)

in (7) is replaced by Fy(g(z)) in (3).
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7. Alternative proof of the Composite Rule for differentiation.

In MATH20132, Calculus of severable variables, this result is gener-
alised to functions from R™ to R™. The proof given in the notes does
not generalise so I will give one here that does.

The usual definition that ¢’ (k) exists can be written in the form

Lo 9 (k) = glh) — b (k)

t—0 t

=0.

Write ry (t) = g (k+t) —g(k) —tg' (k) so limyo 7 (t) /t = 0. Similarly,
write the definition that f’(¢) exists in the form

Lo F ) = F(0) = uf'(©)

u—0 u

=0,

and let ro(u) = f(0 +u) — f(0) —uf'(€), so lim, o 72(u)/u = 0.
Our aim is to show that

(fog)(k+w)—(fog)(k)

lim ” =g'(k) f'(0)
T L ek rw) = (feg ) w0
Writing

R(w) = (fog)(k+w)—(fog)(k)—wy(k)f(0)
the aim becomes to prove that lim,, o R(w)/w = 0.
We start with a rearrangement
R(w) = f(g(k+w))— f(g(k)) —wg (k) f'(€)

= f(ri(w) ++wg'(k)) — f(£) —wg'v (k) f(£)
by definition of r; and ¢ = g(k)

= ra(ri(w) +wg'(k)) + (r(w) +wg' (k) f'(€) — wg' (k) f'(¢)
by definition of 7y,
= ra(ri(w) +wg'(k)) +ri(w) f'(£).
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Hence
R(w) T (rl(w) + wg’(k)) N Tl(w)f’(g),

w w w

Go back to € — ¢ definition of limits to finish the proof.
Let € > 0 be given.

The definition of lim,_,or1(w)/w = 0 implies there exists d; > 0 such
that if 0 < |w| < 0; then

ri(w) ., e () 2
20| < Sy <

(8)
And the definition of lim,, o 73 (w) /w = 0 implies there exists do > 0
such that if 0 < |w| < 05 then

r1(w) €

w’<zu+uwm

1.e.

jwl . (9)

w

ro(w) € ) c
‘<20+W@m’L&'”W”<2u+W@m

Why this most complicated factor of (1+ |¢' (k)|)? It is because (9)
now gives

ra(ri(w) +wg'(k)) _ £ 71 (w) + wg' (k)|
w 2(1+g'(K)]) w '

We could use (8) to bound the r; factor in the right hand side, but
instead we go back to the definition, choosing ¢ = 1 to find 43 > 0 such
that if 0 < |w| < 03 then

r1(w)

‘ <1, ie |ri(w)| <]w|.

Then for 0 < |w| < min (J2, J3) we have

ra(ra(w) + ug () el ) <
w ‘<2u+mwo w o W

the complicated factor has vanished!
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Let § = min (61, d2,03) > 0 and assume 0 < |w| < §. Then (8) and (10)
combine in

< |2 (r1(w) +wg' (k) )

+

In this way we have verified the definition of lim,, o R (w)/w = 0.

. Example 3.1.17 of Inverse Rule. For q € N prove that
d 1 1 1_1

—yE = —yE ,
dy q

for all y > 0.

Solution Here g(y) = y/9, which is the inverse function of f(z) = z7
on (0,00) (which we know has an inverse since f is strictly increasing
and continuous on (0,00)). We know that df (z) /dz = qz?7!, so

d 1 dgly) _ 1 _ 1 _ 1
dy” dy df (x) gz /e g’

1
q
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